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In the optimization of a storage ring lattice with strong sextupoles the amplitude-dependence of 
betatron tunes is one of the key parameters for avoiding unstable beam motions resulting from 
harmful resonance lines. In the hybrid MBA lattice there are two "dispersion bumps" in a cell and 
strong sextupoles are placed inside these arcs for correcting natural chromaticities. The betatron 
phase difference between the two arcs is basically set to (2n+1)π to cancel dominant effects of non-
linear kicks by these sextupoles. However, due to their nested arrangement and a shortage of the 
number of independent tuning knobs, the cancellation is generally not perfect and it is not easy to 
obtain a sufficiently large dynamic aperture. A simple but effective method that we found to 
overcome this difficulty is to introduce a weak sextupole kick between two dispersion bumps for 
controlling the lattice nonlinearity. By adopting this new scheme, we could suppress higher-order 
terms of the amplitude-dependent tune shift (ADTS) and improve the dynamic aperture. To describe 
the tune variation at large horizontal amplitudes, we also derived forth-order formulae of ADTS. By 
applying to the SPring-8 upgrade lattice, we found that our formulae accurately express ADTS 
around a horizontal amplitude of ~10mm and the nonlinear terms of the fourth-order in sextupole 
strength govern the behaviors of circulating electrons at large horizontal amplitudes. These topics 
were discussed in the talk. 
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1.   Introduction 

 For the SPring-8 upgrade project (SPring-8-II) the hybrid 5BA lattice was adopted 
aiming at an extremely small electron beam emittance for generating highly brilliant and 
highly coherent X-rays [1, 2]. The natural emittance is 157pmrad at 6GeV and it is 
expected to be reduced to about 100pmrad with the use of the radiation damping effect by 
insertion devices. The optical functions of a unit cell are shown in Fig. 1. 
 There are two "dispersion bumps" in a cell and strong sextupole magnets indicated as 
SF and SD are placed inside these arcs for correcting natural chromaticities. The betatron 
phase difference between the two arcs Δψ(*+,)  is basically set to (2n+1)π  to cancel 
dominant effects of non-linear kicks by these sextupoles. Though the phase matching 
between the arcs works to a certain extent, the cancellation is not perfect and it is not easy 
to obtain a sufficiently large dynamic aperture (DA). This is mainly due to a nested 
arrangement of strong sextupoles and a shortage of the number of independent tuning 
knobs. In optimizing the lattice we tried to suppress the nonlinearity by tuning sextupole 
strengths, changing the value of Δψ(*+,) and searching an optimum working point [3], but 
we could not obtain a sufficiently large DA.  
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Fig. 1.  The optical functions β. , β/  and η.  of the SPring-8 upgrade lattice. The arrangement of bending, 
quadrupole, sextupole and octupole magnets is shown by the blue, green, orange (solid) and red boxes, 
respectively. 
 
 To break this limitation, we introduced an auxiliary weak sextupole in the middle of a 
unit cell to cancel the leakage kicks further [4]. The effectiveness of this idea was 
checked by using a toy model, and by applying this scheme to the SPring-8 upgrade 
lattice the DA could be enlarged very much.  
 We point out here the importance of higher order effects. For a ring with very strong 
sextupole magnets, the higher-order terms in sextupole strength govern the behavior of 
electrons at large oscillation amplitudes. The well-known lowest-order formulae of the 
amplitude-dependent tune shift (ADTS) are no longer effective for describing tune 
variations at large horizontal amplitudes near a border of DA. Tracking simulations 
always indicate that the higher-order terms in sextupole strength govern the behavior of 
electrons at large amplitudes. We hence developed fourth-order formulae of ADTS for 
describing tune variations at large horizontal amplitudes [5]. The formulae can predict 
tune variations near a border of DA and they are useful for setting the objective function 
in nonlinear optimization. In what follows our correction scheme of using weak 
sextupoles is discussed and we will see the contribution of higher order terms is well 
suppressed by this scheme. 

2.   Higher-Order Formulae of ADTS 

 As explained in the previous section the lowest-order ADTS formulae [7] are 
insufficient to describe tune variations at large horizontal amplitudes. Though higher 
order formulae can be derived in principle by applying the canonical perturbation theory 
[6] to any order in a step-by-step manner, it is practically impossible since the next-order 
contributions to ADTS come from the Hamiltonian of the fourth-order in sextupole 
strength and the number of terms increases rapidly as we proceed to higher orders. We 
hence assumed that the amplitude of the vertical betatron oscillation is smaller compared 
with the horizontal one and neglected terms of O(J/3), where J/ is the action variable of 
the vertical oscillation. This assumption is valid in most practical cases for discussing the 
beam injection and betatron oscillations caused by electron-electron scattering. This 
assumption greatly reduces the number of terms and allows the analytical description of 
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explicit expressions of higher-order formulae of ADTS. Details of the perturbation 
calculations are presented in [5] and we show here the following form of  the formulae: 

 ν.=ν.6+2c..J.+c./J/+3c...J.3+2c../J.J/  (1) 

 ν/=ν/6+c./J.+2c//J/+c../J.3  (2) 

where the coefficients c9: and c9:; are written as 
 

 c9:= λ=λ=F9:
(=?)

=,?   (3) 

 c9:;= λ=λ=λAλBF9:;
(=?AB)

=,?   (4) 

 λ=≡
DE
''

[DH]
 : strength of the i-th sextupole  (5) 

and F9:
(=?) and F9:;

(=?AB) are calculated by the Twiss parameters. The sextupole strengths are 
completely separated in Eqs. (3) and (4) and this form of ADTS formulae is suitable for 
an objective function in nonlinear optimization. 
 

3.   Suppression of ADTS by Auxiliary Weak Sextupoles  

3.1.   Toy Model  

 For suppressing higher-order contributions originated from chromaticity-correcting 
sextupoles we introduced an auxiliary weak sextupole between the dispersion arcs. To 
check the effectiveness of this scheme we first apply it to a simple toy model to see what 
will happen and how the higher-order contributions are suppressed. Our toy model is 
shown in Fig. 2. To simplify the nested structure, two families of sextupoles SD and SF 
are used for chromaticity correction. Linear optics parameters at sextupoles are not 
essential for the present calculations and we assume that β.=5m  and α.=0  at all 
sextupole positions. The tune difference is set to detuned values of νN=0.025  and 
νD=0.67 , which represent an example case of the SPring-8-II lattice. The vertical 
oscillation amplitude is small and we perform one-dimensional calculations only in the 
horizontal direction. 
 

 
 

Fig. 2.  A toy model. The SD and SF are chromaticity-correcting sextupoles, SA is an auxiliary weak sextupole 
for controlling the leakage kick due to SD and SF, and Λ=≡(B''L)=/(Bρ)/2 is the kick by the i-th sextupole. 
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 The strength of sextupoles are determined so that the lowest order coefficient of 
ADTS vanishes (c..=0) and the horizontal chromaticity is fixed under the assumption 
that the dispersion function takes the same value at SD and SF (ΛW+Λ3=const.). With 
these constraints the strength of SD (ΛW) and SF (Λ3) are uniquely determined, once the 
strength of SA (Λ[ ) is given. By changing the value of Λ[ , we carried out tracking 
calculations to see the response of higher-order coefficients of ADTS and the change of 
the Poincare map. The results are shown in Fig.3 for typical values of Λ[. The solid lines 
represent the analytic calculations by using canonical perturbation formulae [5]. Upper 
figures show the ADTS and we see that the suppression of only the lowest order terms 
(dashed curves) is insufficient and higher order contributions (solid curves) dominate the 
beam behavior near a border of stable region. We also see that by the introduction of SA 
with Λ[=-4m the ADTS becomes flatter than the case without SA (Λ[=0), which means 
that higher order terms are well suppressed by introducing the weak sextupole SA. This is 
also seen in the Poincare map. 
 

         

         
Fig. 3.  The ADTS (upper) and the Poincare map (lower) obtained for three typical sets of sextupoles. The Λ[ is 
the strength of SA. The bold red curve in the Poincare map is for guiding eyes, which corresponds to the action 
of J.=8×10-em.  
 

3.2.   Application to SPring-8 Upgrade Lattice 

 We applied the above scheme to the SPring-8 upgrade lattice and introduced weak 
sextupoles which are indicated as SA in Fig.1. After optimizing the strength of SA we 
obtained ADTS as shown in Fig.4 (left) by the red curve. In this calculation all octupoles 
were turned off and only SA was used. For comparison, we show ADTS without SA by 
the black dashed curve and that with correction by only octupoles by the blue curve. We 



5 

see that the ADTS is well suppressed by the introduction of SA and the suppression is 
much better than using octupoles. The contribution of fourth order terms becomes smaller 
and the source of lattice nonlinearity due to the leakage kicks is suppressed. In Fig.4 
(right) we also show the on-momentum DA calculated at an injection point (β.=20.1m,	
β/=1.9m). A high-quality beam will be injected from the XFEL linac (SACLA) [2] at 
x=-2mm and the obtained DA is wide enough for accepting the injected beam. 
 

     
 
Fig. 4.  Calculated ADTS (left) and the on-momentum DA (right) of the SPring-8-II storage ring. In the DA 
calculations the dashed curve is for the ideal ring without errors and solid curves are for the ring with sextupole 
misalignment (±50µm assumed). 

4.   Summary  

 We presented a new scheme of using auxiliary weak sextupoles for suppressing lattice 
nonlinearity in the so-called hybrid MBA lattice [8]. The ADTS could be made flatter 
and a wider DA was obtained. We also pointed out the importance of higher order 
contributions in discussing the behavior of electrons at large horizontal amplitudes. The 
betatron tunes near a border of DA can be described well by the fourth order perturbation 
formulae of ADTS that we have developed [5]. 
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